If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=3t^2+20t
We move all terms to the left:
100-(3t^2+20t)=0
We get rid of parentheses
-3t^2-20t+100=0
a = -3; b = -20; c = +100;
Δ = b2-4ac
Δ = -202-4·(-3)·100
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-40}{2*-3}=\frac{-20}{-6} =3+1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+40}{2*-3}=\frac{60}{-6} =-10 $
| x+7/14=1-3/7x | | 10h-7=-9-26 | | 6f=6 | | z-1=-1 | | 6x+22=10x+16 | | −k+78=98−20−k+78=98−20 | | 1/3x=x+6 | | -8a-8=2 | | k+78=98−20−k+78=98−20 | | q-7=-6 | | 1/3^x=x+6 | | m=8;2m≥6 | | x2–8x+16=8 | | 5/3x=9/20 | | -16x+8x-5x=-7x+8x-2 | | 4(3x^2-110x+600)=0 | | 10x=-102 | | 0=4(3x^2-110x+600) | | 4/5(y—35)=-19 | | 2x-4=-x+56 | | -7p+6=20+12p-20p | | (3x+12)°+(4x+8)°=180° | | -11=r-2 | | 2/3y+29=2 | | 8s+18=5s-15 | | 17d=-19+16d | | 8×+y-88=0 | | 7^2x+3=49^3x | | 10n-6=8n+6 | | 15/21=5/x | | (4y+16)^2=8 | | -10+w=-w+10 |